210k views
4 votes
Sin^2Ф-cos^2Ф=0

The interval is 0≤Ф<2
\pi

User Lisset
by
6.3k points

1 Answer

2 votes

Recall the double angle identity for cosine:


\cos2\Phi=\cos^2\Phi-\sin^2\Phi

So we have


\sin^2\Phi-\cos^2\Phi=-\cos2\Phi=0


\cos x=0 for
x=\frac{(2n+1)\pi}2, where
n is any integer, so


2\Phi=\frac{(2n+1)\pi}2\implies\Phi=\frac{(2n+1)\pi}4

for any integer
n. We get solutions in the interval
0\le\Phi<2\pi when
n=1,2,3,4, giving


\Phi=\frac\pi4,\frac{3\pi}4,\frac{5\pi}4,\frac{7\pi}4

User JoeCo
by
5.4k points