Answer:
1) cos (3x)
2)
![(-(1-√(3))^(2))/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tb0dpufoyrd1cnt5m1e78tlpzhobvawytt.png)
Explanation:
Given expression:
cos(7x)cos(4x)+sin(7x)sin(4x)
By using the trigonometric identity
cos(a)cos(b) + sin(a)sin(b) = cos(a-b)
we have:
cos(7x)cos(4x)+sin(7x)sin(4x) = cos(7x - 4x)
= cos(3x)!
part 2:
tan (-π/12)
by using property tan(-x)= - tan(x)
=-tan(π/12)
= - tan(π/6 / 2)
Using tan(x/2) =
![\sqrt{(1 - cos(x))/(1+cos(x)) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1k14vcmtpeifb8etkvmn1pf1palfyzks0m.png)
= -
![\sqrt{(1 - cos(pi/6))/(1+cos(pi/6)) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fqc2p6mcb0k9r0xwukl6nysr2fo01djvfc.png)
cos π/6 =
![(√(3) )/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a3v03cfqw5pszziwfyzajzlx5hrlnaxfyw.png)
= -
![\sqrt{(1-(√(3) )/(2) )/(1+(√(3) )/(2) ) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/26ml8jxjbfn42orzfy552gxw8a0dsmxk9v.png)
= -
![\sqrt{7-4√(3) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wmrzrcr1zy9k9o0cwf9ia749hg3fukk38o.png)
= - 2+
![√(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/3jkdozb6pk3x1px4ym8d058os0wzvynm5a.png)
=
![-((1-√(3)) ^(2) )/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z6vp2775cdum6qv3uha40m1ebcwkdv8dlz.png)
!