Answer:
b. 75°
Explanation:
Draw a triangle. Write a person name and a point name (a letter) at each vertex: Sam A, Sonny B, and Sal C at the vertices.
Write the distances as AB = c = 153 ft; AC = b = 201 ft; BC = a = 175 ft.
We are looking for angle B.
Since we have a triangle with three side lengths and no angle measures, we use the Law of Cosines.
![b^2 = a^2 + c^2 - 2ac \cos B](https://img.qammunity.org/2022/formulas/mathematics/high-school/xk5y9i5wjhdz4fvyf6uq0ifc3luab57uzv.png)
![201^2 = 175^2 + 153^2 - 2(175)(153) \cos B](https://img.qammunity.org/2022/formulas/mathematics/high-school/mo32srwgce2neycg1dtmx1sjixmtaskupb.png)
![40401 = 30635 + 23409 - 53550 \cos B](https://img.qammunity.org/2022/formulas/mathematics/high-school/ngvc4mkk1pu2pihf2ks3a1cucv893e6paz.png)
![-53550 \cos B = -13643](https://img.qammunity.org/2022/formulas/mathematics/high-school/35ep6t7fnfrbi6x25uhlqp6chy33086deq.png)
![\cos B = (-13643)/(-53550)](https://img.qammunity.org/2022/formulas/mathematics/high-school/wo8l6k24vlyia00zz61829jo78vp0s2a0o.png)
![\cos B = 0.254771242](https://img.qammunity.org/2022/formulas/mathematics/high-school/tgvu1vip3zxwug1mk7ghftaqarmtj6p38y.png)
![B = \cos^(-1) 0.254771242](https://img.qammunity.org/2022/formulas/mathematics/high-school/pycecrrkh2qkf9uj723rcdcg2ln39fhrej.png)
![B = 75^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/i66ibxh94xqe87fo5lfjeg9le2eguo56th.png)
Answer: b. 75°