Answer:
The area of the shaded region is
![44.24\ cm^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jsbgsjn01sqjwzqoqnxkysth3le2fv7zdw.png)
Explanation:
we know that
The area of the shaded region is equal to the area of the circle minus the area of rectangle
step 1
Find the area of circle
The area of the circle is equal to
![A=\pi r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2z11w6ajg8k9itft7shcdqinea4lmf008k.png)
we have
![r=4\ cm](https://img.qammunity.org/2020/formulas/mathematics/high-school/i20ehdj1t52e3oo2213a2sovqqvp9qscgu.png)
substitute
![A=\pi (4)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9m4700jg6obt82u3vd3pfwznub4q2upljd.png)
![A=16\pi\ cm^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6msk7xfbtqhf3btm3qniunadsgkr0z8z7o.png)
step 2
Find the area of rectangle
The area of rectangle is equal to
![A=(3)(2)=6\ cm^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a0iatdj4o09jcvfaxo9npc9rzg0l7es22w.png)
step 3
Find the difference
![16\pi\ cm^(2)-6\ cm^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7hyhlwf9nw8a5hn7kwayis1igolnqr0uvn.png)
assume
![\pi=3.14](https://img.qammunity.org/2020/formulas/mathematics/middle-school/elnllul6m5wik5ibdc7x3b8auxqsmgjtbn.png)
![16(3.14)\ cm^(2)-6\ cm^(2)=44.24\ cm^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/42krfw2lnb6loyn695k08d6gwiisawvlpr.png)