24.4k views
0 votes
Using the figure to the right, if RSTU is a rhombus, find measure RST.

Using the figure to the right, if RSTU is a rhombus, find measure RST.-example-1
User Zarat
by
4.6k points

1 Answer

12 votes

Given:

In rhombus RSTU,
m\angle RUV=(10x-23)^\circ and
m\angle TUV=(3x+19)^\circ.

To find:

The
m\angle RST.

Solution:

We know that, diagonals of a rhombus are angle bisector. So,


m\angle RUV=m\angle TUV


(10x-23)^\circ=(3x+19)^\circ


10x-23=3x+19

Isolating variable terms, we get


10x-3x=23+19


7x=42

Divide both sides by 7.


x=(42)/(7)


x=6

Now,


m\angle RUV=(10x-23)^\circ


m\angle RUV=(10(6)-23)^\circ


m\angle RUV=(60-23)^\circ


m\angle RUV=37^\circ

And,


m\angle TUV=(3x+19)^\circ.


m\angle TUV=(3(6)+19)^\circ


m\angle TUV=(18+19)^\circ


m\angle TUV=37^\circ

Now,


m\angle RUT=m\angle RUV+m\angle TUV


m\angle RUT=37^\circ+37^\circ


m\angle RUT=74^\circ

We know that opposite angles of a rhombus are equal.


m\angle RST=m\angle RUT


m\angle RST=74^\circ

Therefore, the measure of angle RST is
74^\circ.

User Raj Pawan Gumdal
by
4.1k points