Final answer:
The sine, cosine, and tangent of 45 degrees can be found using the values of the adjacent side, opposite side, and hypotenuse of a right triangle. The sine of 45 degrees is (√2) / 2, the cosine is (√2) / 2, and the tangent is 1.
Step-by-step explanation:
The sine, cosine, and tangent of 45 degrees can be found using the values of the adjacent side, opposite side, and hypotenuse of a right triangle. In this case, for a 45-degree angle, the adjacent side and opposite side are equal, so we can use the Pythagorean theorem to find the value of the hypotenuse. Let's denote the length of the adjacent and opposite sides as x.
Sine (sin) 45 degrees: sin 45 degrees = opposite side / hypotenuse = x / √2x = 1 / √2 = (√2) / 2
Cosine (cos) 45 degrees: cos 45 degrees = adjacent side / hypotenuse = x / √2x = 1 / √2 = (√2) / 2
Tangent (tan) 45 degrees: tan 45 degrees = opposite side / adjacent side = x / x = 1