Answer:
The maximum value of g(x) = 2/3 at x = 0
Explanation:
* Lets find the maximum value of a function using derivative of it
- The function g(x) = 2/(x² + 3)
- 1st step use the negative power to cancel the denominator
∴ g(x) = 2(x² + 3)^-1
- 2nd use derivative of g(x) to find the value of x when g'(x) = 0
* How to make the derivative of a function
# If f(x) = a(h(x))^n, then f'(x) = an[h(x)^(n-1)](h'(x))
∵
![g(x)=2(x^(2)+3)^(-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/f76irzahvaeyrzellp383nh1dc0ojr19r1.png)
∴
![g'(x) = 2(-1)(x^(2)+3)^(-2)(2x)=-4x(x^(2)+3)^(-2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/vdl7jnxn6cokhod9utexn619tj7w61vgle.png)
# Put g'(x) = 0
∴
![-4x(x^(2)+3)^(-2)=0====(-4x)/((x^(2)+3)^(2))=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/iz3ie2wepkfe6u0xbj2pe8ub13lpwt6r3w.png)
∴
![-4x=(0)(x^(2)+3)^(2)====-4x = 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/p9h9xkfmyb50yj0q51k6510giqjmgt7c4t.png)
∴ x = 0
* The maximum value of g(x) at x = 0
- Substitute the value of x in g(x)
∴ g(0) = 2/(0 + 3) = 2/3
* The maximum value of g(x) = 2/3 at x = 0