Answer: Option B
![f(g(x)) = 4x^2 -41x + 105](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sd6na2ofej98vr8lzekgng82fnqe18us5w.png)
Explanation:
We have 2 functions
![f(x) = 4x -√(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/28k6igjom57t1vcif08ysrj12mbwtc318z.png)
![g(x) = (x-5)^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/flfarwa3zxsfiqklm2couu4i3ty4lzq6b3.png)
We must find
![f(g(x))](https://img.qammunity.org/2020/formulas/mathematics/high-school/7ed60rg2wkj5piq5nqfz54eo81gfi5n0ae.png)
To find this composite function enter the function g(x) within the function f(x) as follows
![f(g(x)) = 4(g(x)) -√((g(x)))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nk8f3sz2v9i62xxthr5zbyo4bztercxd72.png)
![f(g(x)) = 4(x-5)^2 -√((x-5)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8cslgau4y6r8acarcemwkkczx3vrcchl2f.png)
By definition
![√(a^2) = |a|](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ym4858wav50r61q4xh8onrk98keo6owbyp.png)
So
![f(g(x)) = 4(x-5)^2 -|x-5|](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8n3l9ll2hsgxacqdyu425ctnncw72itxt2.png)
Since x is greater than 5 then the expression
.
Therefore we can eliminate the absolute value bars
![f(g(x)) = 4(x-5)^2 -(x-5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7f7jdjjinptp1gvcyj4mqmtwsbyhxssyxe.png)
![f(g(x)) = 4(x^2 -10x + 25) -(x-5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/41friy8a60mas0bulkm9rslolk1k7edgpc.png)
![f(g(x)) = 4x^2 -40x + 100 -x+5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ejcoed6c1w5esk6ys8dg2sybm3jjq2t32p.png)
![f(g(x)) = 4x^2 -41x + 105](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sd6na2ofej98vr8lzekgng82fnqe18us5w.png)