Answer:
Part 1) The area of the shaded region is
![2.1\pi\ m^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xa8r35yfajkj49smby2uhkwvw32gvzy5ps.png)
Part 2) The length of the arc AB is
![2.5\pi\ in](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ca8w05xit9kildv3r67jkamov906lqvloo.png)
Part 3) The area of the shaded region is
![56.53\pi\ in^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8efsuconsp7z2dui4uzlbssly69kvgmu04.png)
Explanation:
Part 1) Find the area of the shaded region
step 1
Find the area of the circle
The area is equal to
![A=\pi r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2z11w6ajg8k9itft7shcdqinea4lmf008k.png)
we have
![r=3\ m](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8dxhqqkbtzu5eytyi5ev74k1v4w6p744xb.png)
substitute
![A=\pi (3)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vj9bvdrpnlmjyb892d0nxmrv1y6ocnaolj.png)
![A=9\pi\ m^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2bzwzglko206chqls8ki7qavsm17pakvtg.png)
step 2
we know that
The area of complete circle subtends a central angle of 360 degrees
so
by proportion
calculate the area of the shaded region with a central angle of 84 degrees
![(9\pi )/(360) =(x )/(84)\\ \\x=(9\pi)*84/360\\ \\x=2.1\pi\ m^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r3p5ljdgxds9mfqcwpkw5niml63k8garr0.png)
Part 2) What is the length of arc AB?
step 1
we know that
The circumference of a circle is equal to
![C=2\pi r](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kmguleyi3d7rsbh4zj0jg7p7fumid62phf.png)
we have
![r=5\ in](https://img.qammunity.org/2020/formulas/mathematics/middle-school/amgsf7l82q5fvnwe8wgyeiz4eoja6o1amk.png)
substitute
![C=2\pi (5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/67fypu7lhd8bgcafdq5lo3kdfobl988e2e.png)
![C=10\pi\ in](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6xbayt55ag3556dr4g0ds0gqcb72wsdh0u.png)
step 2
we know that
The length of complete circle subtends a central angle of 360 degrees
so
by proportion
calculate the length of the arc AB with a central angle of 90 degrees
![(10\pi )/(360) =(x )/(90)\\ \\x=(10\pi)*90/360\\ \\x=2.5\pi\ in](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9v0mdbd1imetpmd72gyyc0jf1sijw003br.png)
Part 3) Find the area of the shaded region given that XY measures 8 in
step 1
Find the area of the circle
The area is equal to
![A=\pi r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2z11w6ajg8k9itft7shcdqinea4lmf008k.png)
we have
![XY=r=8\ in](https://img.qammunity.org/2020/formulas/mathematics/middle-school/685lyiorebulsddfoxwgafz1tb8ml04odh.png)
substitute
![A=\pi (8)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k8rlwe5wj1awsgro4ecde5oxs2cge1gmef.png)
![A=64\pi\ in^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gai7yi835qj51kssuoljgnjksnz22hhamk.png)
step 2
we know that
The area of complete circle subtends a central angle of 360 degrees
so
by proportion
calculate the area of the shaded region with a central angle of (360-42)=318 degrees
![(64\pi )/(360) =(x )/(318)\\ \\x=(64\pi)*318/360\\ \\x=56.53\pi\ in^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tdj1rcb31uxww354q9fj9tfivmyc02wgi8.png)