85.6k views
1 vote
Graph y=sin^-1 (1/4 x) on the interval -5≤x≤5.

Graph y=sin^-1 (1/4 x) on the interval -5≤x≤5.-example-1
Graph y=sin^-1 (1/4 x) on the interval -5≤x≤5.-example-1
Graph y=sin^-1 (1/4 x) on the interval -5≤x≤5.-example-2

1 Answer

2 votes

Answer:

D

Explanation:

The arcsine (
\sin^(-1)) function of x is defined as the inverse sine function of x when -1≤x≤1.

So, when


-4\le x\le 4,

we have that


-1\le (1)/(4)x\le 1.

This gives us the domain
-4\le x\le 4 of the function
y=\sin^(-1)\left((1)/(4)x\right).

The range of the function
y=\sin^(-1)x is
-(\pi )/(2)\le x\le (\pi )/(2), so the range of the function
y=\sin^(-1)\left((1)/(4)x\right) is the same (options A and C are false).

When x=-4,


y=\sin^(-1)\left((1)/(4)\cdot (-4)\right)=\sin^(-1)(-1)=-(\pi)/(2).

So, option B is false and option D is true.

Graph y=sin^-1 (1/4 x) on the interval -5≤x≤5.-example-1