328,591 views
4 votes
4 votes
NO LINKS!! Please help me with this problem​

NO LINKS!! Please help me with this problem​-example-1
User Jannes Botis
by
2.5k points

2 Answers

21 votes
21 votes


{\qquad\qquad\huge\underline{{\sf Answer}}}

The given figure shows a vertical hyperbola with its centre at origin, and as we observe the figure, we can conclude that :

Length of transverse axis is :


\qquad \sf  \dashrightarrow \: 2b = 12


\qquad \sf  \dashrightarrow \: b = 6

length of conjugate axis is :


\qquad \sf  \dashrightarrow \: 2a = 8


\qquad \sf  \dashrightarrow \: a = 4

Equation of hyperbola ~


\qquad \sf  \dashrightarrow \: \cfrac{ {y}^(2) }{ {b}^(2) } - \cfrac{ {x}^(2) }{ {a}^(2) } = 1

plug in the values ~


\qquad \sf  \dashrightarrow \: \cfrac{ {y}^(2) }{ {6}^(2) } - \cfrac{ {x}^(2) }{ {4}^(2) } = 1


\qquad \sf  \dashrightarrow \: \cfrac{ {y}^(2) }{ {36}^{} } - \cfrac{ {x}^(2) }{ {16}^{} } = 1

User Lasse Christiansen
by
3.0k points
17 votes
17 votes

Answer:


(y^2)/(36)-(x^2)/(16)=1

Explanation:

Standard form equation of a vertical hyperbola


((y-k)^2)/(a^2)-((x-h)^2)/(b^2)=1

where:

  • center = (h, k)
  • vertices = (h, k±a)
  • co-vertices = (h±b, k)
  • foci = (h, k±c) where c² = a² + b²

  • \textsf{asymptotes}: \quad y =k \pm \left((a)/(b)\right)(x-h)
  • Transverse axis: x = h
  • Conjugate axis: y = k

From inspection of the graph:

  • center = (0, 0) ⇒ h = 0, k = 0
  • vertices = (0, 6) and (0, -6) ⇒ a = 6
  • co-vertices = (4, 0) and (-4, 0) ⇒ b = 4

Substitute the found values into the formula:


\implies ((y-0)^2)/(6^2)-((x-0)^2)/(4^2)=1


\implies (y^2)/(36)-(x^2)/(16)=1

NO LINKS!! Please help me with this problem​-example-1
User Wizcheu
by
2.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.