34.1k views
5 votes

30z^(2) =18-7z

User Yoani
by
5.2k points

2 Answers

2 votes

Answer:


\boxed{\bold{z=(2)/(3),\:z=-(9)/(10)}}

Step By Step Explanation:

Add 7z To Both Sides


\bold{30z^2+7z=18-7z+7z}

Simplify


\bold{30z^2+7z=18}

Subtract 18 From Both Sides


\bold{30z^2+7z-18=18-18}

Simplify


\bold{30z^2+7z-18=0}

  • Solve With Quadratic Formula
  • Eg: For The Quadratic Equation Of The Form
    \bold{ax^2+bx+c=0} The Solutions Are
    \bold{x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)}

  • For
    \bold{a=30,\:b=7,\:c=-18:\quad z_(1,\:2)=(-7\pm √(7^2-4\cdot \:30\left(-18\right)))/(2\cdot \:30)}


\bold{(-7+√(7^2-4\cdot \:30\left(-18\right)))/(2\cdot \:30): \ (2)/(3) }


\bold{(-7-√(7^2-4\cdot \:30\left(-18\right)))/(2\cdot \:30): \ -(9)/(10) }

Solutions:


\bold{z=(2)/(3),\:z=-(9)/(10)}

- M

User Jim Ashworth
by
5.7k points
1 vote

Answer:


z=-(9)/(10) or
z=(2)/(3)

Explanation:

We want to solve;


30z^2=18-7z

We rewrite in the form;


az^2+bz+c=0


30z^2+7z-18=0

where a=30,b=7 and c=-18

The solution is given by;


z=(-b\pm √(b^2-4ac) )/(2a)

Substitute to obtain;


z=(-7\pm √(7^2-4(30)(-18)) )/(2(30))


z=(-7\pm √(2209) )/(2(30))


z=(-7\pm 47 )/(60)


z=-(9)/(10) or
z=(2)/(3)

User DmitriBodiu
by
5.6k points