Answer:
![889.67\ m^(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/upfr0uetiwo2rpz4im2y5kdfres0e9zm1w.png)
Explanation:
we know that
The volume of the composite solid is equal to the volume of the cylinder plus the volume of a cone
The volume of the cylinder is equal to
![V=\pi r^(2)h](https://img.qammunity.org/2020/formulas/mathematics/middle-school/titmu4ltmv02ffi5m2twbvsriijaisu55u.png)
we have
![r=5\ m](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cf6h3abdfmfg73rpgdo6gwns5baedernpf.png)
![h=10\ m](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jc43f1dzetultrajuc4y8l3lmzx0g4v8tz.png)
substitute
![V=\pi (5)^(2)(10)=250\pi\ m^(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dhg10argyxmx6spe3kk8snr1p8oc4mskwb.png)
The volume of the cone is equal to
![V=(1/3)\pi r^(2)h](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sejug5qy82n905p78o1slqyi61xj51t5gs.png)
we have
![r=5\ m](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cf6h3abdfmfg73rpgdo6gwns5baedernpf.png)
![h=4\ m](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5a0vq2725vxiie4t5jbd1lt22fx7zt43fx.png)
substitute
![V=(1/3)\pi (5)^(2)(4)=(100/3) \pi\ m^(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nlq1fd0ltlonsjul6hz813ph5yblqwlyyr.png)
The volume of the composite solid is
![250\pi\ m^(3)+(100/3) \pi\ m^(3)=(850/3) \pi\ m^(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m6vxne1bzsm3cc14dl4itglrvikf1sjaip.png)
assume
![\pi=3.14](https://img.qammunity.org/2020/formulas/mathematics/middle-school/elnllul6m5wik5ibdc7x3b8auxqsmgjtbn.png)
![(850/3)(3.14)=889.67\ m^(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9vg7m740qge7uym5xivdag5233i0lg3kdu.png)