163k views
4 votes
If (3a+ 3/a )=5, what is the value of 9a^2+ 9/a^2
PLEASE URGENT HELP!!!!!!

User Anumi
by
8.7k points

2 Answers

4 votes

Answer:

The value for the given expression:


9 a^(2)+(9)/(a^(2))=7

Given:


3 a+(3)/(a)=5

Explanation:

First, we need to square both the sides of the given expression:


\Rightarrow\left(3 a+(3)/(a)\right)^(2)=25

On applying the below algebraic identity:


(a+b)^(2)=a^(2)+b^(2)+2 a b

We get,


\Rightarrow(3 a)^(2)+\left((3)/(a)\right)^(2)++2(3 a)\left((3)/(a)\right)=25

On squaring the terms:


\Rightarrow 9 a^(2)+(9)/(a^(2))+2(3 a)\left((3)/(a)\right)=25

On cancelling the ‘a’ variable:


\Rightarrow 9 a^(2)+(9)/(a^(2))+2(9)=25

On multiplying the constants:


\Rightarrow 9 a^(2)+(9)/(a^(2))+18=25

On taking constant on one side and keeping variable on one side:


\Rightarrow 9 a^(2)+(9)/(a^(2))=25-18

On subtracting the constants, we get the final answer as:


\therefore 9 a^(2)+(9)/(a^(2))=7

User Martin Stone
by
8.4k points
4 votes

Answer:

7

Explanation:

Squaring the first equation gives ...

9a^2 + 2·3a·3/a + 9/a^2 = 25

The factors of "a" in the middle term cancel, leaving ...

9a^2 +9/a^2 +18 = 25

Subtracting 18 answers the question:

9a^2 +9/a^2 = 7

User Eudes
by
8.2k points