Answer :
![6{y}^(4) {z}^(2) + 12 {y}^(3) {z}^(2)-3 {y}^(3) {z}+3 {y}^(2) {z}^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9z9fv27m29hognvcx1xydiajbvb8210ipi.png)
Step-by-step explanation :
To find the product of
![3 {y}^(2) z(2 {y}^(2) z + 4yz - y + z)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dzayp7ldwhss8t1q74wfipgx6vdy88f5zt.png)
First we expand the bracket ,
it implies that, we use the expression outside the bracket to multiply individual expressions inside the bracket.
Hence
![3 {y}^(2) z(2 {y}^(2) z + 4yz - y + z)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dzayp7ldwhss8t1q74wfipgx6vdy88f5zt.png)
![= 3 {y}^(2) z(2 {y}^(2) z) + 3 {y}^(2) z(4yz) - 3 {y}^(2) z(y )+3 {y}^(2) z( z)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t7no8bfc6r6x6wu7ac9c0tbza780wwvchs.png)
we now apply the law of indices
![{a}^(m) * {a}^(n) = {a}^(m+n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ub449yl7umihkc8d0eixu03a3ncni2j1yr.png)
meaning, when you are multiplying two expressions with the same bases , repeat one of the bases and add the exponents.
Then, simplify to obtain
![= 6{y}^(4) {z}^(2) + 12 {y}^(3) {z}^(2)-3{y}^(3) {z}+3 {y}^(2) {z}^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cj7p25vh9actolv9gb49uwvwko8lyhngqh.png)