159k views
5 votes
Find the value of a and b
√ 7-1/√ 7+1-√ 7+1/√ 7-1=a+b√ 7

User Rex Pan
by
6.1k points

2 Answers

7 votes

Explanation:

Hi friend!!

√7-1/√7+1 – √7+1/√7-1

→ (√7-1)/(√7+1) × (√7-1)/(√7-1) – (√7+1)/(√7-1) × (√7+1)/(√7+1)

→ (√7-1)²/(√7+1)(√7-1) – (√7+1)²/(√7-1)(√7+1)

→ {√7²+1²-2(√7)(1)}/(√7²-1²) – {√7²+1²+2(√7)(1)}/(√7²-1²)

→ (7+1-2√7)/6 – (7+1+2√7)/6

→ (8-2√7)/6 – (8+2√7)/6

→ {8-2√7-8-2√7}/6

→ -4√7/6

→ 0+(-2/3)√7 = a+√7b

Therefore, a = 0 and b = -⅔

Hope it helps.

User Roman Shapovalov
by
6.3k points
6 votes

Answer:

a=
(2)/(3),b=
-(2)/(3)

Explanation:

Original=
((√(7) -1)^(2) )/(7-1) -((√(7) +1)^(2) )/(7-1)

=
((√(7) -1)-(√(7) +1)^(2) )/(6)

=
((√(7)-1+√(7) -1)(√(7) -1 -√(7) -1))/(6)

=
(-4√(7) +4)/(6)

=
(2)/(3) -(2)/(3) √(7)

Contrast factor

a+b√ 7=
(2)/(3) -(2)/(3) √(7)

and so a=
(2)/(3),b=
-(2)/(3)

User Whiteatom
by
6.4k points