Answer :
![B. 16 {a}^(2)c](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qrcevljdhrj361fxrwzepxvp9wt0jo6rd7.png)
step-by-step explanation :
![48 {a}^(3)b{c}^(2) / 3abc](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tpe0ffypj2nm98kxteoobilmo2fp4rh4cu.png)
This can be rewritten as:
![\frac{ 48 {a}^(3)b {c}^(2) }{3abc}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bk20a6xvh2lhkaxzbgbymyihaxhnuqvx56.png)
Now,
![(48)/(3)=16](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q5rptpbubzx119sjf5n33i9a10eadg8jrf.png)
The law of indices states that:
![\frac{ {a}^(m) }{ {a}^(n) } = {a}^(m - n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lzdh3s60imv57oor4av09cuycjzo993md4.png)
It implies that, when dividing two expressions with the same bases, repeat one of the bases and subtract the exponents.
Therefore,
![\frac{ {a}^(3) }{a}= {a}^(3 - 1) = {a}^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pio8mx5egutv9qnvx25ms75axurcmtvix9.png)
![(b)/(b) = {b}^(1 - 1) = {b}^(0) = 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s0d284pajl64ugiplu3b89eoti2edg3hzo.png)
Note: Any non-zero number exponent zero is 1
Also
![\frac{ {c}^(2) }{c} = {c}^(2 - 1) = {c}^(1) = c](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ut56ojdnmyinc96pjvf8swd1wjuk7v6cio.png)
Hence:
![\frac{ 48 {a}^(3)b {c}^(2) }{3abc} = 16 {a}^(2)c](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1mgmc7c6j62w7ihurihzl4ibpkvwng3q0m.png)