Answer:
Vertex - (4,-5)
Focus (4,2)
Directrix y=-12
Explanation:
The equation
of the parabola shows that its vertex is at point (4,-5). Multiply the equation by 28:
![28y=(x-4)^2-140\Rightarrow (x-4)^2=28y+140,\\ \\(x-4)^2=28(y+5).](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a0lcsbesvdu8zq190mo99wncf6ec6066lr.png)
The parameter p of the parabola is
![2p=28\Rightarrow p=14.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tiujre3mzdcadl3ebi9ya3hgnkaznqzof9.png)
The coordinates of the focus will be
![\left(4,-5+(p)/(2)\right)=\left(4,-5+(14)/(2)\right)=\left(4,2\right).](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8lbltftyiicd2u4k3b2gkerkbtk8bx8f42.png)
The directrix has the equation
![y=-5-(p)/(2)\Rightarrow y=-5-7,\ y=-12.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4mjtwioam25h5yvj6owfda8ejv595r2145.png)