ANSWER
By simplifying the left hand side using the Pythagorean Identity.
Step-by-step explanation
The given identity is
![\csc^(2) (x) - \cot^(2) (x) = 1](https://img.qammunity.org/2020/formulas/mathematics/high-school/nij35k9xgrbhnzsj1j8hsi50769gx6f5oh.png)
Take the left hand side and simplify to get the right hand side.
![\csc^(2) (x) - \cot^(2) (x) = (1)/(\sin^(2) (x)) - ( \cos^(2) (x))/(\sin^(2) (x))](https://img.qammunity.org/2020/formulas/mathematics/high-school/pr4jsokrqgmwxqgjdtuk7a4ybpvmdtyj2s.png)
Collect LCM for the denominators.
![\csc^(2) (x) - \cot^(2) (x) = (1 - \cos^(2) (x))/(\sin^(2) (x))](https://img.qammunity.org/2020/formulas/mathematics/high-school/e6ypo2pdibuesrebnbv0h57mo7pcajhsu8.png)
Recall the Pythagorean Identity.
![\cos^(2) (x) + \sin^(2) (x) = 1](https://img.qammunity.org/2020/formulas/mathematics/high-school/c22o72zg7ely6enso02bjjdzlfiief1gpc.png)
This implies that:
![1 - \cos^(2) (x) = \sin^(2) (x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ee3s2x4qhvxe3t543sy9biuzgiia7cyz3h.png)
We substitute this to get,
![\csc^(2) (x) - \cot^(2) (x) = (\sin^(2) (x))/(\sin^(2) (x))](https://img.qammunity.org/2020/formulas/mathematics/high-school/5etmjnzegot2z9ddwy4kv3zpzxh863ut43.png)
![\csc^(2) (x) - \cot^(2) (x) = 1](https://img.qammunity.org/2020/formulas/mathematics/high-school/nij35k9xgrbhnzsj1j8hsi50769gx6f5oh.png)