ANSWER
4 ft
Step-by-step explanation
The velocity equation of the oscillating spring is given by the function.
![v(t)=2 \sin(t) \: \: {ms}^( - 1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/qdxa61m4nc53jr1t3fd5ane7ctuuv3u5s6.png)
To find the displacement function, we need to to Integrate the velocity function.
![s(t) = \int \: 2 \sin(t) dt](https://img.qammunity.org/2020/formulas/mathematics/high-school/wh7zqzf5prpzgq9lhrc9f5xyjasd1idwrf.png)
![s(t) = - 2 \cos(t) + k](https://img.qammunity.org/2020/formulas/mathematics/high-school/e3dum0ggqeox9l9zj492mitkekhsdt4hxs.png)
At time t=0, there was no displacement.
This implies that,
![s(0) = 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/jjrp6vew9tac097sm74p57h8ghtw6js3i9.png)
![0= - 2 \cos(0) + k](https://img.qammunity.org/2020/formulas/mathematics/high-school/5gjqx9ckpdsei8t7n13n4trxvun6vesfnv.png)
![0= - 2 + k](https://img.qammunity.org/2020/formulas/mathematics/high-school/fvu537zyl4lt7x926mtt4btztd1n7xsdn0.png)
![k = 2](https://img.qammunity.org/2020/formulas/mathematics/high-school/kyohxsz8o2yyl8cp9iaufkfqhr5ofx2d7w.png)
The displacement function then becomes,
![s(t) = - 2 \cos(t) + 2](https://img.qammunity.org/2020/formulas/mathematics/high-school/7apef41ddylt4ziobv0wsw2mrx0papjsjx.png)
To find the displacement over the first π seconds, we put
![t = \pi](https://img.qammunity.org/2020/formulas/mathematics/high-school/scjczfdqfu4zh7di4yn01fvouig1la0u4y.png)
into the equation for the displacement to get,
![s(\pi) = - 2 \cos(\pi) + 2](https://img.qammunity.org/2020/formulas/mathematics/high-school/z43su7j7nsihq5fqbe58wdjfazqb76r14q.png)
![s(\pi) = - 2 ( - 1) + 2](https://img.qammunity.org/2020/formulas/mathematics/high-school/s6iv3fbe3rw205l9n4yg4xqxxbzv42paom.png)
![s(\pi) = 2 + 2 =4 ft](https://img.qammunity.org/2020/formulas/mathematics/high-school/dpsirxz97eqqvbqphqvqo9gozsk95d1spv.png)