Answer:
![{\angle}BEC=62^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/college/bj56akhgnbmd9hr6xhig1qbgexjnlqvlqg.png)
Explanation:
Given:It is given that Chords AB and CD intersect each other at point E.
To find: The measure of ∠BEC.
Construction: Join AC.
Solution:
It is given that Chords AB and CD intersect each other at point E.
Now, we know that the inscribed angle is the half of the intercepted arc, thus
![{\angle}ACD={(1)/(2)}(AD)](https://img.qammunity.org/2020/formulas/mathematics/college/c3mtgyjzwvh04w7q55lqfj5kx2xa5qcda4.png)
![{\angle}ACD={(1)/(2)}(54^(\circ))](https://img.qammunity.org/2020/formulas/mathematics/college/30w1ab8ei7slum0twqpfyr4i0z9gbfqaxb.png)
![{\angle}ACD=27^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/college/2sitp56v5ycrvqvjuaj785vjt9w8dg5mpy.png)
And,
![{\angle}CAB={(1)/(2)}(CB)](https://img.qammunity.org/2020/formulas/mathematics/college/ftzikokr87ut83bs6cu0edpjdmt8lwgntj.png)
![{\angle}CAB={(1)/(2)}(70^(\circ))](https://img.qammunity.org/2020/formulas/mathematics/college/5bbktq303ueca6ko2jqhxv73pw22jl15oj.png)
![{\angle}CAB=35^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/college/84pmkseavln27jcs6jpsq0jpz2y1yllegk.png)
Now, in ΔAEC, we have
(Angle sum property of triangles)
![35+27+{\angle}AEC=180](https://img.qammunity.org/2020/formulas/mathematics/college/obba6hftfje4xgtgir6vle3nmoqg0c9p2u.png)
![{\angle}AEC=118^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/college/cnt94prsf9ftnb1ircgi0u5t6iuem9lx03.png)
Also, using the straight line property, we have
![{\angle}AEC+{\angle}CEB=180^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/college/h6m4nq4kb9zzzv348yniuudwpp5pd9pwo5.png)
![118+{\angle}CEB=180](https://img.qammunity.org/2020/formulas/mathematics/college/eac849il32ahe3jhrgm7n9pqs2jy78o7i2.png)
![{\angle}CEB=62^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/college/ptpq9dc4tg2ywyqxv9odylz2cl8vokqp96.png)
Therefore, the measure of
is
.