61,966 views
42 votes
42 votes
PLLLLLEASE T_T PLLLEASE

PLLLLLEASE T_T PLLLEASE-example-1
User David Tew
by
2.7k points

1 Answer

22 votes
22 votes


{\qquad\qquad\huge\underline{{\sf Answer}}}

let's solve ~


\qquad \sf  \dashrightarrow \: \cfrac{4}{y - 6} + \cfrac{5}{y + 3} = \cfrac{7y - 4}{ {y}^(2) - 3y - 18}


\qquad \sf  \dashrightarrow \: \cfrac{4(y + 3) + 5(y - 6)}{(y - 6)(y + 3)} = \cfrac{7y - 4}{ {y}^(2) - 3y - 18}


\qquad \sf  \dashrightarrow \: \cfrac{4y + 12 + 5y - 30}{ {y}^(2) + 3y - 6y - 18 } = \cfrac{7y - 4}{ {y}^(2) - 3y - 18}


\qquad \sf  \dashrightarrow \: \cfrac{9y - 18}{ {y}^(2) - 3y - 18 } = \cfrac{7y - 4}{ {y}^(2) - 3y - 18}


\qquad \sf  \dashrightarrow \: 9y - 18 = 7y - 4

[ denominator is same, so numerator must have same value to be equal ]


\qquad \sf  \dashrightarrow \: 9y - 7y = - 4 + 18


\qquad \sf  \dashrightarrow \: 2y = 14


\qquad \sf  \dashrightarrow \: y = 7

User ATG
by
2.9k points