Answer:
The lateral area is
![298.7\ units^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5rt6hkm7sto84fq4xv4hobaecgv0vpo16u.png)
Explanation:
we know that
The lateral area of the regular octagonal pyramid is equal to the area of its eight triangular lateral faces
The lateral area is equal to
![LA=8[(1)/(2)(b)(l)]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/whspwrqj8orfz4iq62zgzr7lh4ct95l9sd.png)
we have
![b=6.6\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/76okwlpneb8at9b0444dsnn2xegbfr67yr.png)
To find the slant height apply the Pythagoras Theorem
![l^(2)=8^(2) +8^(2)\\l^(2)=128\\l=√(128)\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rjnr0u13noed5lpo6qxc5nvq1ue5uzs1y7.png)
Find the lateral area
substitute the values
![LA=8[(1)/(2)(6.6)(√(128))]=298.7\ units^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n5r8nrvbp18839lrkn0ph7zy4vtkvxrct4.png)