
This distribution has expectation
![E[X]=\displaystyle\int_(-\infty)^\infty xf_X(x)\,\mathrm dx=\int_1^\infty\frac3{x^3}\,\mathrm dx=\frac32](https://img.qammunity.org/2020/formulas/mathematics/high-school/gqzqs1gaw5nn11ogcbqxw9q9ynfp5ivwi1.png)
a. The probability that
falls below the average/expectation is

b. Denote by
the largest of the three claims
. Then the density of this maximum order statistic is

where
is the distribution function for
. This is given by

So we have

and the expectation is
![E[X_((3))]=\displaystyle\int_(-\infty)^\infty xf_{X_((3))}(x)\,\mathrm dx=\int_1^\infty\frac9{x^3}\left(1-\frac1{x^3}\right)^2\,\mathrm dx=(81)/(40)=\boxed{2.025}](https://img.qammunity.org/2020/formulas/mathematics/high-school/cea1fii3vser8q0xy88w5ihbogjzun6oh5.png)
c. Denote by
the smallest of the three claims.
has density

so the expectation is
![E[X_((1))]=\displaystyle\int_(-\infty)^\infty xf_{X_((1))}(x)\,\mathrm dx=\int_1^\infty\frac9{x^9}\,\mathrm dx=\frac98=\boxed{1.125}](https://img.qammunity.org/2020/formulas/mathematics/high-school/uy28al7ptz64wc7c79msrn0lgude884l3x.png)