First of all, we can split the root of the multiplication into the multiplication of the roots:
![\sqrt[3]{-56ab^6c^(10)}=\sqrt[3]{-56}\cdot\sqrt[3]{a}\cdot\sqrt[3]{b^6}\cdot\sqrt[3]{c^10}](https://img.qammunity.org/2020/formulas/mathematics/high-school/q2tnnvjrrrh2kbrayks1oosf5zlj7jk0ji.png)
If we look at the prime factorization of -56 we have

So, we have
![\sqrt[3]{-56} = -\sqrt[3]{2^3\cdot 7} = -\sqrt[3]{2^3}\cdot\sqrt[3]{7} = -2\sqrt[3]{7}](https://img.qammunity.org/2020/formulas/mathematics/high-school/143bhmy7dbqxkf7rc1p00iwes9ez9wv2wz.png)
We can do nothing about
, because the exponent is lower than the order of the root.
We have
![\sqrt[3]{b^6} = (b^6)^{(1)/(3)} = b^(6)/(3)=b^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/7mug1hirbi05aw7abeg3cc1gkqw6oksoqo.png)
Finally, we have
![\sqrt[3]{c^(10)} =\sqrt[3]{c^(9+1)}=\sqrt[3]{c^(9)\cdot c}=c^(9)/(3)\cdot\sqrt[3]{c}=c^3\sqrt[3]{c}](https://img.qammunity.org/2020/formulas/mathematics/high-school/hnbxdx3edkglfrsj5j1nij4sc8oeji80be.png)
So, the whole expression is equivalent to