129k views
5 votes
Which is equivalent to 5 Square root of 1215^x

User Lobstah
by
7.3k points

2 Answers

2 votes

Answer:


(3\sqrt[5]{5} )^(x)

Explanation:

Given that


\sqrt[5]{1215^(x) }

=>
1215^{(x)/(5) } Using radical rule

=>
(3*3*3*3*3*5)^{(x)/(5) }

=>
(3^(5) * 5 )^{(x)/(5) }

=>
(3^{5*(1)/(5) } * 5 )^(x)

=>
(3*5^{(1)/(5) } )^(x)

=>
(3\sqrt[5]{5} )^(x)

User Brooklyn
by
7.9k points
5 votes

Answer:


5\sqrt{1215^(x)}\Rightarrow 45\sqrt{15^(x)}\:\:or\:\:45*15^{(x)/(2)}

Explanation:

1) Performing Prime Factorization


\\1215|3\\405|3\\135|3\\45|3\\15|3\\5|5\\1\Rightarrow 3^(2)*3^(3)*5

2) Simplifying


5\sqrt{3^(2)*3^(2)*3*5}\Rightarrow 5*9\sqrt{15^(x)}\Rightarrow 45\sqrt{15^(x)}

3) Rewriting it as a power, where the denominator is the index, and the numerator is the exponent:


45\sqrt{15^(x)}\:\:=\:\:45*15^{(x)/(2)}

User Isquierdo
by
8.0k points