374,190 views
13 votes
13 votes
Find the volume of this cone.

Find the volume of this cone.-example-1
User Loduwijk
by
2.8k points

2 Answers

15 votes
15 votes


\huge\text{Hey there!}


\huge\textbf{What is the formula for finding the}\\\\\huge\textbf{the volume of a cone?}


\large\boxed{\mathsf{(\pi * r^2* h)/(3) = volume}}


\bullet\large\textsf{ Whereas, \boxed{r} is your \underline{radius}, \boxed{h} is your \underline{height}, \& \boxed{\pi} is your pi.}


\bullet\large\textsf{The pi }\boxed{(\pi)}\large\textsf{ is approximately equal to 3.14.}


\huge\textbf{What are the labels in your equation?}


\star\ \large\boxed{{Radius}}\rightarrow \textsf{\underline{4\ centimeters}}}}}


\star\ \large\boxed{{Height}}\rightarrow \textsf{\underline{9\ centimeters}}}}}


\star\ \large\boxed{{\pi}}\rightarrow \textsf{\underline{3}}}}}


\huge\textbf{What does should the equation look}\\\\\huge\textbf{like?}


\large\boxed{\mathsf{(3 * 4^2 *9)/(3)}}


\huge\textbf{What are the steps to solve for the}\\\\\huge\textbf{question to get the result?}


\large\boxed{\mathsf{(3 * 4^2 *9)/(3)}}


\large\boxed{\mathsf{= (3*4*4*9)/(3)}}


\large\boxed{= \mathsf{(3*16*9)/(3)}}


\large\boxed{\mathsf{= (48*9)/(9)}}


\large\boxed{\mathsf{= (432)/(3)}}


\large\boxed{\mathsf{= (432 / 3)/(3/3)}}


\large\boxed{= \mathsf{(144)/(1)}}


\large\boxed{\mathsf{= 144/1}}


\large\boxed{= \textsf{144}}


\huge\textbf{What is the result to this question?}


\huge\boxed{\frak{144\ cm^3}}\huge\checkmark


\huge\text{Good luck on your assignment \& enjoy your day!}

~
\frak{Amphitrite1040:)}

User Pdiddy
by
3.7k points
15 votes
15 votes

Calculate the volume of the cone

To start calculating the volume of the cone, we obtain the following data:

  • r = 4 cm
  • h = 9 cm
  • π = 3

To calculate the volume of a cone, we apply the following formula:


\boldsymbol{\sf{V=(\pi r^(2)h )/(3) }}, where

  • V = volume
  • h = height
  • r = radius
  • π = pi

We solve, substituting our data in the formula:


  • \boldsymbol{\sf{V=(3*(4 \ cm)^(2)*9 \ cm )/(3) }}

taking the square root


  • \boldsymbol{\sf{V=(3 *16 \ cm^(2)*9 \ cm )/(3) }}

Multiplying


  • \boldsymbol{\sf{V=(432 \ cm^(3) )/(3) }}

Dividing


  • \boxed{\boldsymbol{\sf{V=144 \ cm^(3) }}}

Therefore the volume of the cone is 144 cm³.

User Krishnom
by
3.0k points