35.4k views
4 votes
Find the center and the radius of the circle whose equation is x square -16x+y square = 36

1 Answer

4 votes

Answer:

center: (8, 0)

radius: 10

Explanation:

The equation of a circle in a standard form:


(x-h)^2+(y-k)^2=r^2

(h, k) - center

r - radius

We have the equation:


x^2-16x+y^2=36\\\\x^2-2(x)(8)+y^2=36\qquad\text{add}\ 8^2\ \text{to both sides}\\\\\underbrace{x^2-2(x)(8)+8^2}_((*))+y^2=36+8^2\qquad\text{use}\ (a-b)^2=a^2-2ab+b^2\qquad(*)\\\\(x-8)^2+(y-0)^2=36+64\\\\(x-8)^2+(y-0)^2=100\\\\(x-8)^2+(y-0)^2=10^2\\\\\text{Therefore}\\\\center:(8,\ 0)\\radius:10

User Bobson
by
5.5k points