Final answer:
The kinetic energy of an electron accelerated through a 10 kV potential difference is 10,000 eV, with 1 eV being the energy given to a charge accelerated through 1 V.
Step-by-step explanation:
The kinetic energy of an electron accelerated through a potential difference is directly related to the voltage it is accelerated through. If an electron is accelerated through a potential difference of 10 kV (10,000 V), then it will be given an energy of 10,000 eV since 1 eV is defined as the energy given to a fundamental charge accelerated through 1 V. Therefore, the kinetic energy of the electron in your case is 10,000 eV.
In this scenario, the potential difference represents the energy gained by the electron as it moves through the electric field. The kinetic energy is given by the product of the elementary charge and the potential difference. This is based on the fundamental relationship in electrostatics that the work done (and therefore the energy gained) by a charged particle moving through an electric field is equal to the product of the charge and the potential difference.