Given:
Zeroes of a polynomial are –2, –4, –3 + 4i.
To find:
The polynomial function of least degree with real coefficients in standard form.
Solution:
According to the complex conjugate root theorem, if a complex number a+ib is a zero of a polynomial, then its conjugate a-ib is also a zero of than polynomial.
–3 + 4i is zero of the polynomial. So, by complex conjugate root theorem -3-4i is also a zero of required polynomial.
If c is a zero of p(x), then (x-c) is a factor of p(x).
–2, –4, –3 + 4i, -3-4i are zeroes of the polynomials. So, (x+2), (x+4), (x+3-4i), (x+3+4i) are the factors of the required polynomial.
Let the required polynomial be p(x), so
![p(x)=(x+2)(x+4)(x+3-4i)(x+3+4i)](https://img.qammunity.org/2022/formulas/mathematics/high-school/7vctshekbhyc0v2daltvt592u60llmt83t.png)
![[\because a^2-b^2=(a-b)(a+b)]](https://img.qammunity.org/2022/formulas/mathematics/high-school/85p639al2fqbkfpvaacm253m69siuprplr.png)
![[\because (a+b)^2=a^2+2ab+b^2]](https://img.qammunity.org/2022/formulas/mathematics/high-school/30v5pzlwcqi892xdjcz1mq364jokft77ac.png)
![[\because i^2=-1]](https://img.qammunity.org/2022/formulas/mathematics/high-school/z24xir88d20yppchswroot2b03adpi65o2.png)
![p(x)=(x^2+6x+8)(x^2+6x+9+16)](https://img.qammunity.org/2022/formulas/mathematics/high-school/u35g2e6rj5hjytjy2gwi4734qkdg53ud5f.png)
![p(x)=(x^2+6x+8)(x^2+6x+25)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4y7go7z07br2ov0xtcpd8s2a577umnlfuo.png)
![p(x)=x^2(x^2+6x+25)+6x(x^2+6x+25)+8(x^2+6x+25)](https://img.qammunity.org/2022/formulas/mathematics/high-school/xjc8qfsubpr8n0xyka0rja1j54gxnnj2zt.png)
![p(x)=x^4+6x^3+25x^2+6x^3+36x^2+150x+8x^2+48x+200](https://img.qammunity.org/2022/formulas/mathematics/high-school/dmxhtk3xjw6yu5tcigsyh1ku2i0vmlceo2.png)
Combining like terms, we get
![p(x)=x^4+(6x^3+6x^3)+(25x^2+36x^2+8x^2)+(150x+48x)+200](https://img.qammunity.org/2022/formulas/mathematics/high-school/vzbgc067am7nxw34egml1na225dyfdyu54.png)
![p(x)=x^4+12x^3+69x^2+198x+200](https://img.qammunity.org/2022/formulas/mathematics/high-school/r3dpxla5hgr8qs7lyxxhhh0j7u5rpa9sak.png)
Therefore, the required polynomial is
.