Answer:
The answer is (b) ⇒
![(d^(5) )/(2√(c) )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4urs19pt6zwka2ozsenq1asih7fmp8zqla.png)
Explanation:
∵
![\frac{\sqrt{c^(2)d^(6)}}{\sqrt{4c^(3)d^(-4)}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tzpamyme2yczqukjt6sf8g7oz9kl77dpmi.png)
∵ √x² = x ⇒ that means to cancel the square root divide
the power by 2
∴
![\sqrt{c^(2)d^(6)}=cd^(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5ma9qwobumfh2h05kuvfsjbios6kzg51y5.png)
∵ √4 = 2 ⇒ √2×2 = √2² = 2
∵ √c³ =
![c^{(3)/(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hao04piiqjxseh22tijnvippxywwn5hh2c.png)
∴
![\sqrt{4c^(3)d^(-4)}=2c^{(3)/(2)}d^(-2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6ufmdg8y3724pdan4czrim8jokycw01cel.png)
∴
![\frac{cd^(3)}{2c^{(3)/(2)}d^(-2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m3on6q6dcpv4kdont885arux783tj13yoh.png)
∵ In the same base with multiplication we add the power,
in same base with division we subtract the power
∴
![(1)/(2)c^{1-(3)/(2)}d^(3-(-2))=(1)/(2)c^{(-1)/(2)}d^(5)=](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xke929w3i67y32j8045axot6naxoh4cqz3.png)
⇒
![c^{(1)/(2)}=√(c)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dqxq8nycnagxat3o67dwky63yr9jrqjnhe.png)
∴ The answer is (b) ⇒
![(d^(5))/(2√(c))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i979s7w5aoe2avhkae3nb34dh6g8prpwjy.png)