Answer:
The perimeter of the trapezoid is
![38.25\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o4rfcnre3262hgm17dv674qza38m30kj47.png)
Explanation:
we know that
The perimeter of the trapezoid is the sum of its four side lengths
so
In this problem
![P=QR+RS+ST+QT](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xvtagepiu2m2mwdir9k1dc33lq2ds6xayl.png)
the formula to calculate the distance between two points is equal to
we have
![Q(8, 8), R(14, 16), S(20, 16),T(22, 8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ctnd19jle6g4inltbdgvh5i7w2qibwegar.png)
step 1
Find the distance QR
![Q(8, 8), R(14, 16)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i3srlqq1lhu5ldqaq2e40t5zn3ojgi5u5p.png)
substitute the values in the formula
step 2
Find the distance RS
![R(14, 16), S(20, 16)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rwwz0zsddjrjd1j7np6cfnlcmxm0lkeepr.png)
substitute the values in the formula
step 3
Find the distance ST
![S(20, 16),T(22, 8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9fryi1y0dok2yzs5izyg2klvugxmq5gy3m.png)
substitute the values in the formula
step 4
Find the distance QT
![Q(8, 8),T(22, 8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z52w6dopiv3pvl78vpbye0l6swr6x4pmiv.png)
substitute the values in the formula
step 5
Find the perimeter
![P=10+6+8.25+14=38.25\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z7k90w8wx7wq4p247d2wxdpqrjud3rflmn.png)