Answer:
Polynomial expression that represents the area of blanket:
![A(x)=(6x^2+5x-21)cm^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/2lkk9yaispvw5oiosd5smwo3lc57if0y1h.png)
If
:
Explanation:
The area of the rectangle can be calculated with the formula:
![A=lw](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6ha4hehcoeuii45f92n9qa4p9h4g0r5n0e.png)
Being l the lenght of the rectangle and w the width of the rectangle.
In this case, the lenght and the width are represented with:
![l=(3x+7)cm](https://img.qammunity.org/2020/formulas/mathematics/high-school/m4xcy59km0c0mgzuufvfkhjthgwadjw0wj.png)
![w=(2x-3)cm](https://img.qammunity.org/2020/formulas/mathematics/high-school/ml04swjkppvbryyjczpwlagyj0no65lht7.png)
Substitute them into
:
![A(x)=(3x+7)(2x-3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/2729i1369x8o4fhhq13k79jvl3ysx5ctkq.png)
Then:
Use Distributive property (Remember the Product of powers property:
):
![A(x)=(3x+7)(2x-3)\\A(x)=6x^2-9x+14x-21](https://img.qammunity.org/2020/formulas/mathematics/high-school/lspryijgwh9v96r45jyu9u3oim7sxt1sq7.png)
Add like terms:
(Simplied form)
Evaluate
:
![A(2)=(6(2)^2+5(2)-21)cm^2\\A(2)=(6(4)+10-21)cm^2\\A(2)=(24-11)cm^2\\A(2)=13cm^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/k6msycoqezdfwfg3qsaniyp1qu57eclysj.png)