Answer:
The value of x = -0.46
Explanation:
∵
÷
![e^(-x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/hdqjbdfx6eyruqxlxbjmws3hl2n27h2y4g.png)
∴
![(4e^(5x))/(e^(-x))-(e^(-x))/(e^(-x))=(-3e^(2x))/(e^(-x))](https://img.qammunity.org/2020/formulas/mathematics/high-school/2a428ib76wmid7q93fd6zecmmkifif0wpx.png)
* Subtract the power of the same bases
∴
![4e^(6x)-1=-3e^(3x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/gq06vxxh9d79jx2yioca5o04l3kz0nde7f.png)
* Let
![e^(3x)=y](https://img.qammunity.org/2020/formulas/mathematics/high-school/hfn5pht5tispntbj58zghc3bh7sih0qz57.png)
∴
![e^(6x)=y^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/fd7wc9jp1ndfqpwqlgtw3ho9waxbyyn66l.png)
∴ 4y² - 1 = -3y
∴ 4y² + 3y - 1 = 0 ⇒ factorize
∴ (4y - 1)(y + 1) = 0
∴ y + 1 = 0 ⇒ y = -1
∴ 4y - 1 = 0 ⇒ 4y = 1 ⇒ y = 1/4
∵
![y=e^(3x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/3iqbc5bq1g1rifljm0nz7y0o1l2gr9t82w.png)
∴ y = -1 refused (
never gives -ve value)
∴
⇒ insert ln in both sides
∵
⇒ ln(e) = 1
∴ 3xln(e) = ln(1/4)
∴ 3x = ln(1/4)
∴ x = [ln(1/4)] ÷ 3 = -0.46