64.4k views
2 votes
Expand the following logs:


log_(2) \sqrt{ab^(3) }

SHOW ALL WORK.

User Celaeno
by
5.8k points

1 Answer

2 votes

Answer:


\log_2(ab^3)^{(1)/(2)}=(1)/(2)[\log_2(a)+3\log_2(b)].

Explanation:

The given logarithmic expression is
\log_2√(ab^3).

We rewrite the radical as an exponent to obtain;


\log_2(ab^3)^{(1)/(2)}.

Recall that;
\log_a(M^n)=n\log_a(M)

We apply this rule to obtain;


=(1)/(2)\log_2(ab^3).

We now use the rule:
\log_a(MN)=\log_a(M)+\log_a(N)

This implies that;


=(1)/(2)[\log_2(a)+\log_2(b^3)].

We again apply:
\log_a(M^n)=n\log_a(M)


=(1)/(2)[\log_2(a)+3\log_2(b)].

User Dawson
by
5.9k points