Answer:
![f^(-1)(x)=(e^x)/(3),\ x\in(-\infty,\infty),\ y>0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/twk15tuh9qjmu91wcvfxmx8574jatchyai.png)
Explanation:
Consider the function
the domain of this function is x>0 and the range of this function is all real numbers. The inverse function has the domain all real numbers and the range y>0.
If
![y=\ln 3x,](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g2qdbnvakimlazfx99zccx5v6dflrcq9is.png)
then
![3x=e^y,\\ \\x=(e^(y))/(3).](https://img.qammunity.org/2020/formulas/mathematics/middle-school/aeh2ghvrgq9juxi0bjdnul128ls7hw3zyo.png)
Change x into y and y into x:
![y=(e^x)/(3).](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8kkhs8zmy2u87lfjk4f2z513eso7ufkpwh.png)
Thus, the inverse function is
![f^(-1)(x)=(e^x)/(3).](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zyp7o3n6m9oywggcsf1lsbrhbvl0wrp4e7.png)