Answer:
![DG = 26](https://img.qammunity.org/2022/formulas/mathematics/high-school/jflhfc4ct5irwp8bbv5xla1akhcfb8ygt3.png)
![GE = 26](https://img.qammunity.org/2022/formulas/mathematics/high-school/ig92ynj927d0rndwssm48vl3yf9lnhddjp.png)
![DF = 15](https://img.qammunity.org/2022/formulas/mathematics/high-school/69inae6fkdm9ouvo5p1rdi54xagl24hnsi.png)
![CH = 14](https://img.qammunity.org/2022/formulas/mathematics/high-school/8o6svk9ttahnfn2exb4wsx8d6rxv5kr85n.png)
![CE = 28](https://img.qammunity.org/2022/formulas/mathematics/high-school/2zjzsjh1d90ob3yhws5tl6j2lcujyep3u1.png)
Explanation:
The figure has been attached, to complement the question.
![DE = 52](https://img.qammunity.org/2022/formulas/mathematics/high-school/ohannqddyh6cnsu9kt75ih12uhar2z8c73.png)
![FC = 15](https://img.qammunity.org/2022/formulas/mathematics/high-school/fjfvswuotk2dunwhqyxcgi67wrn2sz55jp.png)
![HE = 14](https://img.qammunity.org/2022/formulas/mathematics/high-school/yxhk1nrsowoz3knknvo8h63jnh4auflyde.png)
Given that J is the centroid, it means that J divides sides CD, DE and CE into two equal parts respectively and as such the following relationship exist:
![DF = FC](https://img.qammunity.org/2022/formulas/mathematics/high-school/k3eniqom3mb913ldskcu6xk5i52z88uym3.png)
![CH = HE](https://img.qammunity.org/2022/formulas/mathematics/high-school/kruumeme7xhrncazzhpgkbcsk8nmhck5yu.png)
![DG = GE](https://img.qammunity.org/2022/formulas/mathematics/high-school/jaloskgge6q83rg4df92q2lqtkjarurnov.png)
Solving (a): DG
If
, then
![DE = DG + GE](https://img.qammunity.org/2022/formulas/mathematics/high-school/dhmt23u8yjwqj2ktem8b3ilj781etim784.png)
![DE = DG + DG](https://img.qammunity.org/2022/formulas/mathematics/high-school/eumnrptyqz4q4nhqff693t2rnzir75ire6.png)
![DE = 2DG](https://img.qammunity.org/2022/formulas/mathematics/high-school/d1lxfl9svuwnrzgyyztmep1f1l3a81n7tn.png)
Make DG the subject
![DG = (1)/(2)DE](https://img.qammunity.org/2022/formulas/mathematics/high-school/crml9a068nufuak546je4nzehm4wlm4c18.png)
Substitute 52 for DE
![DG = (1)/(2) * 52](https://img.qammunity.org/2022/formulas/mathematics/high-school/nzdjt6o3aia3r97o55na006kyuun2ynb5q.png)
![DG = 26](https://img.qammunity.org/2022/formulas/mathematics/high-school/jflhfc4ct5irwp8bbv5xla1akhcfb8ygt3.png)
Solving (b): GE
If
, then
![GE = DG](https://img.qammunity.org/2022/formulas/mathematics/high-school/7w60qvm7dyefdbl9idkdwskzv5fonkmmww.png)
![GE = 26](https://img.qammunity.org/2022/formulas/mathematics/high-school/ig92ynj927d0rndwssm48vl3yf9lnhddjp.png)
Solving (c): DF
![DF = FC](https://img.qammunity.org/2022/formulas/mathematics/high-school/k3eniqom3mb913ldskcu6xk5i52z88uym3.png)
So:
![DF = 15](https://img.qammunity.org/2022/formulas/mathematics/high-school/69inae6fkdm9ouvo5p1rdi54xagl24hnsi.png)
Solving (d): CH
![CH = HE](https://img.qammunity.org/2022/formulas/mathematics/high-school/kruumeme7xhrncazzhpgkbcsk8nmhck5yu.png)
![CH = 14](https://img.qammunity.org/2022/formulas/mathematics/high-school/8o6svk9ttahnfn2exb4wsx8d6rxv5kr85n.png)
Solving (e): CE
If
, then
![CE = CH + HE](https://img.qammunity.org/2022/formulas/mathematics/high-school/5f4uvhuqmalmw5gts1mippwagize0jq8k0.png)
![CE = 14 + 14](https://img.qammunity.org/2022/formulas/mathematics/high-school/dqxmwen3khe13qlbm1zsalaf7jq2epdtqy.png)
![CE = 28](https://img.qammunity.org/2022/formulas/mathematics/high-school/2zjzsjh1d90ob3yhws5tl6j2lcujyep3u1.png)