16.2k views
2 votes
If sin theta = 2/3 and tan theta <0 what is the value of cos theta?

a) (sqrt5)/2
b) -sqrt5
c) (sqrt5)/3
d) -(sqrt5)/3

1 Answer

6 votes

Answer:

d)
\cos(\theta)=-(√(5))/(3)

Explanation:

If
\sin(\theta)=(2)/(3) and
\tan(\theta)\:<\:0, then


\theta is in quadrant 2.

Recall that;


\sin^2(\theta)+\cos^2(\theta)=1

We substitute the given sine ratio to obtain;


((2)/(3))^2+\cos^2(\theta)=1


(4)/(9)+\cos^2(\theta)=1


\cos^2(\theta)=1-(4)/(9)


\cos^2(\theta)=(5)/(9)


\cos(\theta)=\pm \sqrt{(5)/(9)}


\cos(\theta)=\pm (√(5))/(3)

We are in the second quadrant, therefore


\cos(\theta)=-(√(5))/(3)

User Andrzej Reduta
by
4.8k points