Answer:
![b=1, \geq](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hzx8s8kn0cl6vmouj02qp7zr5jdmzlt2ot.png)
Explanation:
we know that
The absolute value function has two solutions
Observing the graph
the solutions are
and
![x\leq -3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wds326h2m1iac8g0spkdca7o0eqqqcwmr0.png)
First solution (case positive)
assume the symbol of the first solution and then compare the results
![\left|x+b\right|\ge2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4q7woey5w7yoe3bq8dl60excnt7gjpt7sg.png)
![(x+b)\ge2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/j6i2g37g5zz2p3njx2vcx8wy1i8gn89zwx.png)
![x\ge2-b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fd6f3vu73lum7ivqkrg3onlwmu2i3hx6oz.png)
![2-b=1\\b=2-1\\ b=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t9u7fgrru05gtor2ait0t9uiw9wjagamw5.png)
Second solution (case negative)
![-(x+b)\ge2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cyrcj91vxv68oq2no3ze0oejg2l974i7zn.png)
Multiply by -1 both sides
![(x+b)\leq-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3m6cuf3l9beiw49aumk9xmhden4ej2qo7d.png)
substitute the value of b and compare the results
![(x+1)\leq-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r34v6zats7uy1zl0rs1nx98njphu9a7vuz.png)
![x\leq-2-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m5tnm0kpjw54w30ffwnrixx0n0lnrq4dl6.png)
-------> is correct