100k views
0 votes
Exercise 3.7.4: let a = 2 1 0 0 2 0 0 0 2 .

a.what are the eigenvalues?

b.what is/are the defect(s) of the eigenvalue(s)?

c.find the general solution of ~x 0 = a~x in two di erent ways and verify you get the same answer.

User Arganzheng
by
8.4k points

1 Answer

1 vote

With


\mathbf A=\begin{bmatrix}2&1&0\\0&2&0\\0&0&2\end{bmatrix}

we have


\det(\mathbf A-\lambda\mathbf I)=\begin{vmatrix}2-\lambda&1&0\\0&2-\lambda&0\\0&0&2-\lambda\end{vmatrix}=(2-\lambda)^3

so
\mathbf A has one eigenvalue,
\lambda=2, with multiplicity 3.

In order for
\mathbf A to not be defective, we need the dimension of the eigenspace to match the multiplicity of the repeated eigenvalue 2. But
\mathbf A-2\mathbf I has nullspace of dimension 2, since


\begin{bmatrix}0&1&0\\0&0&0\\0&0&0\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\mathbf 0\implies x=0\text{ or }y=0

That is, we can only obtain 2 eigenvectors,


\begin{bmatrix}1\\0\\0\end{bmatrix}\text{ and }\begin{bmatrix}0\\0\\1\end{bmatrix}

and there is no other. We needed 3 in order to complete the basis of eigenvectors.

User Wdberkeley
by
8.2k points