Answer:
The measure of the largest interior angle is
![132\°](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fwnrmj9tjgmjgi2s2p5y6t25wrufjuj1vw.png)
Explanation:
we know that
The sum of the interior angles in a polygon is equal to the formula
![S=(n-2)180\°](https://img.qammunity.org/2020/formulas/mathematics/college/f1dzyrpt3zd5l3za5cfhtwe4wgtppa7wkz.png)
where
n is the number of sides of polygon
In this problem we have a heptagon
so
![n=7\ sides](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ny878nyw4484wbvru5tdhjlcok21gkpwgz.png)
substitute the value in the formula
![S=(7-2)180\°=900\°](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p3c63csv3f59gejsvshrn47f8ranuvtz2o.png)
![S=x+x+(x-2)+(x-2)+(x+2)+(x+2)+(x+4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/aoiws7uluidggidfehaqj17nb9bo84h7e1.png)
![900=x+x+(x-2)+(x-2)+(x+2)+(x+2)+(x+4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mbe64kv2tg4t6h3gykub0ml6vyxedrzihf.png)
Solve for x
![900=7x+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a3za2u75ne91ro9lkt64nu9fsfxnpetza3.png)
![7x=900-4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/784d5jx9m148ioeo45vag35zg7ny6gfw3d.png)
![7x=896](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lhh5dfem3z1i5rs9kvu8z20tacs8s20e3l.png)
![x=128\°](https://img.qammunity.org/2020/formulas/mathematics/middle-school/in3bm24wlmomkmxdwi1to1fosemn2hwim6.png)
Find the measure of the largest interior angle
![(x+4)\°=(128\°+4\°)=132\°](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rgckyu1c7l5136hyio3cd4z3cm0fdgh2ul.png)