Answer:
Part 1)
![{x^(2) -12x=0](https://img.qammunity.org/2020/formulas/mathematics/college/emhwi7o58ths53ut26p8ss5lk1wwf3j9hv.png)
Part 2) The height of the pole is
Explanation:
Let
x------> the length of the pole
y------> the length of the shadow
we know that
-----> equation A
Applying the Pythagoras Theorem to find the distance (hypotenuse in a right triangle)
-----> equation B
substitute equation A in equation B and solve for x
![\sqrt{x^(2) +(x-3)^(2)}=x+3](https://img.qammunity.org/2020/formulas/mathematics/college/fxcamoxfwhlpztfela689ghalgj1b39xc1.png)
squared both sides
![{x^(2) +(x-3)^(2)}=(x+3)^(2)](https://img.qammunity.org/2020/formulas/mathematics/college/j8quozf8ty7fufuh9npfyxfv071cfim21c.png)
![x^(2) +x^(2)-6x+9=x^(2)+6x+9](https://img.qammunity.org/2020/formulas/mathematics/college/a4c4rrz879ab09ym3gi3kkdms15j30p7lb.png)
-----> equation that represent the situation
solve for x