222k views
5 votes
Select the two values of x that are roots of this equation 2x-3=-5x^2

User Bokw
by
7.9k points

2 Answers

4 votes

Answer:

x=3/5 and x=-1

Explanation:

a p e x

User Carolina Faedo
by
8.1k points
2 votes


\bold{Answer}


\boxed{\bold{X \ = \ -1, \ X \ = \ (3)/(5) }}


\bold{Explanation}


  • \bold{Find \ Two \ Values \ Of \ X: \ 2x-3=-5x^2}


\bold{-------------------}


  • \bold{Switch \ Sides}


\bold{-5x^2=2x-3}


  • \bold{Add \ 3 \ To \ Both \ Sides}


\bold{-5x^2+3=2x-3+3}


  • \bold{Simplify}


\bold{-5x^2+3=2x}


  • \bold{Subtract \ 2x \ From \ Both \ Sides}


\bold{-5x^2+3-2x=2x-2x}


  • \bold{Simplify}


\bold{-5x^2-2x+3=0}


  • \bold{Solve \ With \ The \ Quadratic \ Formula}

  • \bold{For \ The \ Quadratic \ Form \ For \ ax^2+bx+c=0 \ The \ Solutions \ Are \ x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)}

  • \bold{For \ A \ =-5,\:b=-2,\:c=3:\quad x_(1,\:2)=(-\left(-2\right)\pm √(\left(-2\right)^2-4\left(-5\right)3))/(2\left(-5\right))}


\bold{(-\left(-2\right)+√(\left(-2\right)^2-4\left(-5\right)\cdot \:3))/(2\left(-5\right)): \ -1}


\bold{(-\left(-2\right)-√(\left(-2\right)^2-4\left(-5\right)\cdot \:3))/(2\left(-5\right)): \ (3)/(5) }


  • \bold{Solutions}


\bold{x=-1,\:x=(3)/(5)}


\boxed{\bold{Eclipsed}}

User Lindsy
by
7.6k points

No related questions found