i) The given function is
![f(x)=(x^2+4x-4)/(x^2-2x-8)](https://img.qammunity.org/2020/formulas/mathematics/high-school/blazkdyaj5lj4mijbben9n49g90ie66gci.png)
We can rewrite in factored form to obtain;
![f(x)=(x^2+4x-4)/(x^2-2x-8)](https://img.qammunity.org/2020/formulas/mathematics/high-school/blazkdyaj5lj4mijbben9n49g90ie66gci.png)
![f(x)=((x+2√(2)+2)(x-2√(2)+2))/((x-4)(x+2))](https://img.qammunity.org/2020/formulas/mathematics/high-school/bs1u5x5rj9tl7ppeh6s8bajljkbxe3qx0q.png)
The domain is
![(x-4)(x+2)\\e0](https://img.qammunity.org/2020/formulas/mathematics/high-school/t1jzboln3ha0gfrblgotiarsajnig996to.png)
![(x-4)\\e0,(x+2)\\e0](https://img.qammunity.org/2020/formulas/mathematics/high-school/z07t38d8ytu8f20bfkfhldqvlz5e2oqa7y.png)
![x\\e4,x\\e-2](https://img.qammunity.org/2020/formulas/mathematics/high-school/5507u4dy7r7p4f3u8q1547xv8sty26x168.png)
ii) To find the vertical asymptotes equate the denominator to zero.
![(x-4)(x+2)=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/eftu0fo05n996pa4xb621u8v3k1d51l7i7.png)
![(x-4)=0,(x+2)=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/yh39mxq7j1jun02pwfupo5r1mwwaism67b.png)
![x=4,x=-2](https://img.qammunity.org/2020/formulas/mathematics/high-school/tk03vlou3ori4glj2i659snhhvdaihk2as.png)
iii) To find the roots, equate the numerator to zero.
![(x+2√(2)+2)(x-2√(2)+2)=0}](https://img.qammunity.org/2020/formulas/mathematics/high-school/x2u22qtcmnl7t1vg6l6coq9g6lzskmshzb.png)
![(x+2√(2)+2)=0,(x-2√(2)+2)=0}](https://img.qammunity.org/2020/formulas/mathematics/high-school/aotdznq5zzcp01a9m213oid5o5xe0gof9o.png)
![(x=-2√(2)-2,x=2√(2)-2)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/yev55wle0vrt7v79org53x42i1dpdz6378.png)
iv) To find the y-intercept, substitute
into the equation.
![f(0)=(0^2+4(0)-4)/(0^2-2(0)-8)](https://img.qammunity.org/2020/formulas/mathematics/high-school/d8biv9jrhue9ada7mdntp161c0j2gzggvn.png)
We simplify to obtain;
![f(0)=(-4)/(-8)](https://img.qammunity.org/2020/formulas/mathematics/high-school/jj1j48891h7xdc5yc1icb3dmujsyf1w59v.png)
![f(0)=(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/or0lcma8lnxa6bl7pdttnwonr91t82wnac.png)
v) The horizontal asymptote is
![lim_(\to \infty)(x^2+4x-4)/(x^2-2x-8)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/6a1gh9uexszjxmnf12idpyno4ygc26cfug.png)
The equation of the horizontal asymptote is y=1
vi) The function does not have a variable factor that is common to both the numerator and the denominator.
The function has no holes in it.
vii) The given function is a proper rational function.
Proper rational functions do not have oblique asymptotes.