5.3k views
2 votes
What is the product?(7x2y3)(3x5y8)

User JasonY
by
5.0k points

2 Answers

4 votes

Answer:the answer is c

Explanation:

User Jon Abaca
by
5.2k points
5 votes

Answer:

The product of
(7x^(2)y^(3))(3x^(5)y^(8)) is
=21x^(7)y^(11)

Explanation:

We need to find product of expression :
(7x^(2)y^(3))(3x^(5)y^(8))


\mathrm{Apply\:exponent\:rule}:\quad \:a^b\cdot \:a^c=a^(b+c)


=7y^3\cdot \:3x^(2+5)y^8


=7y^3\cdot \:3x^7y^8


=7\cdot \:3x^7y^(3+8)


=7\cdot \:3x^7y^(11)


\mathrm{Multiply\:the\:numbers:}\:7\cdot \:3=21


=21x^7y^(11)

Therefore, the product of
(7x^(2)y^3)(3x^(5)y^(8)) is
=21x^(7)y^(11)

User StfBln
by
5.4k points