Answer:
![y=-x^(2)+2x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h3twrrrlnv5ttric3533ogzf3ke8ump783.png)
![y=-x^(2)+2x-4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/342ai5j45ssfkwzd88z6xcnxvto5pzfd1u.png)
![y=-x^(2)+2x-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/parnfo0gnyxtkypth4yoavasr3p396okfn.png)
Explanation:
we know that
The equation of a vertical parabola in vertex form is equal to
![y=a(x-h)^(2) +k](https://img.qammunity.org/2020/formulas/mathematics/middle-school/iguy1a2uth4xnc1xw3l7ytb8jgsn5n5ead.png)
where
(h,k) is the vertex
The axis of symmetry is equal to the x-coordinate of the vertex
so
![x=h](https://img.qammunity.org/2020/formulas/mathematics/high-school/n9gyo1l1yephoo2vgw80zlbyr9a1ky34f7.png)
If a> 0 then the parabola open upward (vertex is a minimum)
If a< 0 then the parabola open downward (vertex is a maximum)
In this problem we have
![y=-x^(2) +2x+3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/63j1ylvbrv05q5j8jalo2w7fqynsx6s8hm.png)
The vertex is the point
------> observing the graph
The axis of symmetry is
![x=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/tm1gspaocfnp875ybbxdnb3weyr5fcnjyq.png)
If the graph of this function is shifted downwards and the axis of symmetry remains x=1
then
The x-coordinate of the vertex of the new graph must be equal to 1
The y-coordinate of the vertex of the new graph must be less than 4
The parabola of the new graph open downward
therefore
Verify each case
case a)
![y=-x^(2)+2x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h3twrrrlnv5ttric3533ogzf3ke8ump783.png)
Convert to vertex form
![y=-(x^(2)-2x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tibv3kmy69co2t5e810b3ouo5nisk1wry3.png)
![y-1=-(x^(2)-2x+1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2f5nsq348p297kw4o573otobnjlnlya8xt.png)
![y-1=-(x-1)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h1zuze1owzhkgkh3y6fmo28jkoud6esasy.png)
![y=-(x-1)^(2)+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qpnow7m30axeycnzvucmgzvmuxpnrecwmw.png)
The vertex is (1,1)
therefore
The function could be the equation of the new graph
case b)
![y=-x^(2)-2x+3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7fsid58062lh5ttc8tewxsc94bb56f5264.png)
Convert to vertex form
![y-3=-(x^(2)+2x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bvgjlkzc90x73z80v6f6lcba3orfvvd5wa.png)
![y-3-1=-(x^(2)+2x+1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ae7u5owv7qgtrmfd3cc20uzmexe68vqlhg.png)
![y-4=-(x+1)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7d4uwsqeswkhc3rtvjps0vz7bpamtgr9hy.png)
![y=-(x+1)^(2)+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f2ut10zdrdrmkl1pbbdn1m9jrpueyvbzhz.png)
The vertex is (-1,4)
therefore
The function cannot be the equation of the new graph
case c)
![y=-x^(2)+2x-4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/342ai5j45ssfkwzd88z6xcnxvto5pzfd1u.png)
Convert to vertex form
![y+4=-(x^(2)-2x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pyaiv90oezsf5bbbmwm52jfja4fwl68q9z.png)
![y+4-1=-(x^(2)-2x+1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7vy2d17aml6hebfne6znawujxhu34ynnj1.png)
![y+3=-(x-1)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wlyro0dnwmv26esyhnnl8mbv71uam18hs9.png)
![y=-(x-1)^(2)-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zgkkfcj0icimiwml29w4jddznjgf6w266c.png)
The vertex is (1,-3)
therefore
The function could be the equation of the new graph
case d)
![y=-x^(2)+2x+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rgo12cdgtz8drhtcnbyu7eyr2dczlmumcy.png)
Convert to vertex form
![y-4=-(x^(2)-2x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ikb8tu5dovs936behr74ggzmrgnsc7erwi.png)
![y-4-1=-(x^(2)-2x+1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6rff1ulzurltv7l5ug6dg3e9wsmu0a9ub9.png)
![y-5=-(x-1)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1ctoqakw3ag77il70kcta8doe8doh00fs4.png)
![y=-(x-1)^(2)+5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fcwlxgtbbkq6ojbi59fehh8qdp4yjj4kgk.png)
The vertex is (1,5)
therefore
The function cannot be the equation of the new graph
case e)
![y=-x^(2)+2x-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/parnfo0gnyxtkypth4yoavasr3p396okfn.png)
Convert to vertex form
![y+3=-(x^(2)-2x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/frleoy5pdblwjdpxcrr6xkyz0k9j100liw.png)
![y+3-1=-(x^(2)-2x+1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/65fxhwyg6vcrymv2e3ejpm667dx6eh380u.png)
![y+2=-(x-1)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w8ssvndie7qepwr7ggu83zwivbm5281f7j.png)
![y=-(x-1)^(2)-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2hue2xfx6m8484fpht1j4glhsprggo0cxm.png)
The vertex is (1,-2)
therefore
The function could be the equation of the new graph