57.4k views
2 votes
Given:

MK

LM
,
MK

KN
MN=13, KL=15, LM-KN=4
Find: Area of KLMN.

User Idmitriev
by
9.1k points

1 Answer

5 votes

Answer:

84 square units.

Explanation:

If LM - KN = 4, then denote KN = x and LM = x+4.

1. Consider right triangle KLM. By the Pythagorean theorem,


KL^2 =ML^2+MK^2,\\ \\15^2=(x+4)^2+MK^2.

2. Consider right triangle KMN. By the Pythagorean theorem,


MN^2 =NK^2+MK^2,\\ \\13^2=x^2+MK^2.

Subtract these two equations:


15^2-13^2=(x+4)^2-x^2,\\ \\225-169=x^2+8x+16-x^2,\\ \\56=8x+16,\\ \\8x=56-16,\\ \\8x=40,\\ \\x=5\ un.

Then


13^2=5^2+MK^2,\\ \\MK^2=169-25,\\ \\MK^2=144,\\ \\MK=12\ un.

The area of KLMN is


A_(KLMN)=(LM+KN)/(2)\cdot MK=(5+9)/(2)\cdot 12=14\cdot 6=84\ un^2.

Given: MK ⊥ LM , MK ⊥ KN MN=13, KL=15, LM-KN=4 Find: Area of KLMN.-example-1
User Thealon
by
8.0k points