330,102 views
25 votes
25 votes
Find the volume of the sphere.

Either enter an exact answer in terms of π or use 3.14, point, 14 for π and round your final answer to the nearest hundredth

Find the volume of the sphere. Either enter an exact answer in terms of π or use 3.14, point-example-1
User Dolphin
by
2.1k points

2 Answers

20 votes
20 votes


\textit{volume of a sphere}\\\\ V=\cfrac{4\pi r^3}{3}~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=8 \end{cases}\implies \begin{array}{llll} V=\cfrac{4\pi (8)^3}{3}\implies V=\cfrac{2048\pi }{3}\\\\ V\approx 2144.66 \end{array}

User Navid Shad
by
3.2k points
22 votes
22 votes

Answer:

The volume of sphere is 2143.57.

Step-by-step Step-by-step explanation:

Here's the required formula to find the volume of sphere :


{\star{\small{\underline{\boxed{\sf{\purple{Volume_((Sphere)) = (4)/(3)\pi {r}^(3)}}}}}}}

  • »» π = 3.14
  • »» r = radius


{\dashrightarrow{\sf{Volume_((Sphere)) = (4)/(3)\pi {r}^(3)}}}


{\dashrightarrow{\sf{Volume_((Sphere)) = (4)/(3) * 3.14 {(8)}^(3)}}}


{\dashrightarrow{\sf{Volume_((Sphere)) = (4)/(3) * 3.14 {(8 * 8 * 8)}}}}


{\dashrightarrow{\sf{Volume_((Sphere)) = (4)/(3) * 3.14 {(64 * 8)}}}}


{\dashrightarrow{\sf{Volume_((Sphere)) = (4)/(3) * 3.14 {(512)}}}}


{\dashrightarrow{\sf{Volume_((Sphere)) = (4)/(3) * 3.14 * 512}}}


{\dashrightarrow{\sf{Volume_((Sphere)) = (4 * 3.14 * 512)/(3)}}}


{\dashrightarrow{\sf{Volume_((Sphere)) = (12.56* 512)/(3)}}}


{\dashrightarrow{\sf{Volume_((Sphere)) = (6430.72)/(3)}}}


{\dashrightarrow{\sf{Volume_((Sphere)) \approx 2143.57}}}


\star{\underline{\boxed{\sf{\red{Volume_((Sphere)) \approx 2143.57}}}}}

Hence, the volume of sphere is 2143.57.


\rule{300}{2.5}

User Drum
by
2.5k points