127k views
15 votes
Proove that: tanα + cotα = secα. cosecα

User LonliLokli
by
5.9k points

1 Answer

3 votes

Answer:

see explanation

Explanation:

Using the trigonometric identities

tan a =
(sina)/(cosa), cot a =
(cosa)/(sina)

sec a =
(1)/(cosa), cosec a =
(1)/(sina)

Consider the left side

tana + cota

=
(sina)/(cosa) +
(cosa)/(sina)

=
(sin^2a+cos^2a)/(cosasina)

=
(1)/(cosasina)

=
(1)/(cosa) ×
(1)/(sina)

= seca . coseca

= right side , thus proven

User JMoura
by
5.4k points