108k views
0 votes
If cos x=8/17, and 270° < x < 360°
what is cos(2x)?

User Untrots
by
6.5k points

2 Answers

1 vote

Answer:

-
(161)/(289)

Explanation:

Using the trigonometric identity

cos(2x) = 2cos²x - 1

given cosx =
(8)/(17), then

cos(2x) = 2(
(8)/(17))² - 1

= 2 ×
(64)/(289) -
(289)/(289)

=
(128)/(289) -
(189)/(189) = -
(161)/(289)

User Trisibo
by
5.1k points
6 votes

Answer:
\bold{-(161)/(289)}

Explanation:

Given: cos x =
(8)/(17), x is in Quadrant 4

Use Pythagorean Theorem to find sin x:

8² + y² = 17²

y² = 17² - 8²

y² = 289 - 64

y² = 225

y = 15

→ sin x =
-(15)/(17)

Use the double angle formula to find cos (2x):


cos (2x) = cos^2 x - sin^2 x\\\\.\qquad=\bigg((8)/(17)\bigg)^2-\bigg(-(15)/(17)\bigg)^2\\\\\\.\qquad=(64)/(289)-(225)/(289)\\\\\\.\qquad=-(161)/(289)

User Jophy Job
by
5.5k points